218 research outputs found

    Space charge dynamics of liquids.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Electrical Engineering. Thesis. 1970. Sc.D.MICROFICHE COPY ALSO AVAILABLE IN BARKER ENGINEERING LIBRARY.Vita.Bibliography: leaves 193-195.Sc.D

    Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

    Get PDF
    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, ττ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s[superscript −1]. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B[subscript 0]. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B[subscript 0]. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002–0.01 solid volume fraction) and nanoparticle radii (1–10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B[subscript 0] field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B[subscript 0] are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1–3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.R. J. Shillman Career Development AwardThomas and Gerd Perkins Professorship AwardMIT Dean's FellowshipNational Institutes of Health (U.S.) (Award R01 EB007942

    Surface flashover breakdown mechanisms on liquid immersed dielectrics

    Get PDF
    Flashover formation and expansion mechanisms on the surfaces of different dielectrics immersed in transformer oil have been numerically analyzed. Streamers emanating from a needle electrode tend to transform to surface flashovers if the immersed dielectric permittivity is higher than the liquid permittivity and/or the dielectric interfacial surface cuts the path of the streamer. Perpendicular interface of the immersed dielectric impedes the breakdown by deflecting the streamer and slowing down the surface flashover. The parallel dielectric interface, however, assists the breakdown by regulating the surface flashover velocity to an approximately constant value (∼10 km/s).IEEE Dielectrics and Electrical Insulation Societ

    Effects of Impulse Voltage Polarity, Peak Amplitude, and Rise Time on Streamers Initiated From a Needle Electrode in Transformer Oil

    Get PDF
    An electrothermal hydrodynamic model is presented to evaluate effects of the applied lightning impulse voltage parameters such as polarity, magnitude, and rise time on the initiation and propagation of the streamers formed in an IEC defined needle-sphere electrode geometry filled with transformer oil. Instantaneous velocity, column diameter, head curvature, maximum electric field, and the volume charge density have been investigated as the main characteristics of the streamer. Modeling results indicate that greater applied voltage peak amplitudes form streamers with higher velocity, greater head curvatures, and thicker columns. The bushy negative streamers usually initiate at almost twice the applied voltage magnitude and propagate slower than filamentary positive streamers. Results also show that in transformer oil at the same impulse voltage peak amplitude, shorter rise times create thicker positive and negative streamers.ABB Corporate Research Center (Vasteras, Sweden

    Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields

    Get PDF
    Abstract: Ferrofluid spin-up flow has been studied in finite height cylinders and spheres subjected to a uniform rotating magnetic field. Ultrasound measurements in finite height cylinders with a free surface show the presence of surface driven flows as well as bulk flows. In finite height cylinders with a cover, only bulk flows exist. Ultrasound measurements in fully filled spheres of ferrofluid give negligible measureable flow. The bulk spin-up flow has been attributed to the demagnetizing non-uniform magnetic field associated with the shape of the fluid, the nonuniform distribution of fluid magnetization, and to spin-diffusion. COMSOL Multiphysics simulations help confirm that the real mechanism of bulk spin-up flow is due to non-uniform magnetic properties of the ferrofluid, either imposed externally or associated with the shape of the ferrofluid

    A Smart Online Over-Voltage Monitoring and Identification System

    Get PDF
    This paper proposes a complete and effective smart over-voltage monitoring and identification system. In recent years, smart grids are of the greatest interest in power system research. One of the main features of smart grid is their self-healing, which can continuously carry out online self-evaluation, discover existing faults, and correct them immediately. The over-voltage smart monitoring-identification-suppression systems play a key role in the construction of self-healing grids. In this paper, eight kinds of common over-voltage are discussed and analyzed. The S-transform algorithm is used to extract features of over-voltage. Aiming at the main features of each kind of over-voltage, six different characteristic quantities are proposed. A well designed fuzzy expert system and a support vector machine are employed as the classifiers to build a two-step identification model. The accuracy of the identification system is verified by field records. Results show that this system is feasible and promising for real applications.National Basic Research Program of China (973 Program) (2009CB724504)National 111 Project of China (B08036

    Impulse breakdown delay in liquid dielectrics

    Get PDF
    Theoretical images of streamers, revealing the mechanisms behind impulse breakdown in liquid dielectrics, are presented. Streamers lead to electrical breakdown by forming paths, capable of carrying large current amplitudes between electrodes. Breakdown delays and terminal currents are calculated for various electrode geometries (40 μm needle and 6.35 mm sphere) and gap distances (up to 10 mm). Modeling results indicate that the breakdown in needle-needle electrodes requires higher impulse voltage amplitudes than in needle-sphere electrodes for the same gap distances. Streamers in needle-sphere geometries are about 50% thicker than streamers propagating in needle-needle geometries under similar impulse voltage amplitudes.ABB Corporate Research Center (Vasteras, Sweden)IEEE Dielectrics and Electrical Insulation Society (Fellowship
    • …
    corecore